Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Increased vegetation in the Arctic region may counteract global warming

Climate change creates more shrub vegetation in barren, arctic ecosystems. A study at Lund University in Sweden shows that organisms, such as bacteria and fungi, are triggered to break down particularly nutritious dead parts of shrubbery. Meanwhile, the total amount of decomposition is reducing. This could have an inhibiting effect on global warming.
Johannes Rousk. Photo: Kathrin Rousk
Johannes Rousk. Photo: Kathrin Rousk

A large amount of the Earth’s carbon and nitrogen is stored in arctic ecosystems where the ground is permanently frozen, known as permafrost. Climate change causes such soil to heat up. Johannes Rousk at Lund University, together with colleagues Kathrin Rousk och Anders Michelsen from the University of Copenhagen and the Center for Permafrost (CENPERM) have conducted field studies outside Abisko in the very north of Sweden, studying what happens to the decomposition of organic material as the climate gets warmer.

Watch short interview with Johannes Rousk!

 
“As the Arctic region becomes warmer, more shrubs start to grow, rather than moss which is difficult to break down. The shrubs have leaves and roots that are easy to break down and secrete sugar. What we have shown is that decomposition organisms, such as bacteria and fungi, are triggered to look for nutrient-rich organic materials that contain more nitrogen, while decomposition as a whole is reduced”, says Johannes Rousk.

When the nutrient-rich material is decomposed, the nutrient-poor part of the organic material is enriched, probably causing the amount of carbon to increase. Current climate models do not consider the connection between increased shrub vegetation as a result of ongoing climate change, and soil becoming less nutritious.

“It will be exciting to see how this will affect the soil carbon turnover in the long term. Perhaps our results will help complement future climate models”, says Johannes Rousk.

Today no one knows what less nutritious soil in the Arctic ecosystem and an overall decreased decomposition of organic material will lead to. However, Johannes Rousk dares to venture a guess:

“I suspect it will have an inhibiting effect on global warming”, he says.

*Images in the video by Johannes and Kathrin Rousk

Press release first published on lunduniversity.lu.se on May 17, 2016.


Article
Rousk, K et al (2016). Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments. Published in the scientific journal Global Change Biology.

Latest articles

11/09/2017
Planting trees in Africa is a dubious environmental strategy
Planting trees in Africa is a dubious environmental strategy
30/08/2017
Gaming for better decisions under uncertanty
Gaming for better decisions under uncertanty
21/08/2017
New LUCSUS’ Blog Initiative to Forward Discussion on Sustainability
New LUCSUS’ Blog Initiative to Forward Discussion on Sustainability
21/08/2017
The four lifestyle choices that most reduce your carbon footprint
The four lifestyle choices that most reduce your carbon footprint
22/07/2017
A ‘climate war’ in Syria?
A ‘climate war’ in Syria?

Lund University Sustainablity Forum
Sölvegatan 37
223 62 Lund

contact [at] sustainability.lu.se